Title
Increased permeability of reconstructed human epidermis from UVB-irradiated keratinocytes
Authors
Lilian Julia Löwenau, Christian Zoschke, Robert Brodwolf, Pierre Volz, Christian Hausmann, Suvara Wattanapitayakul, Alexander Boreham, Ulrike Alexiev, Monika Schäfer-Kortin
Institution
Freie Universität Berlin
Country
Germany
Year
2017
Journal
European Journal of Pharmaceutics and Biopharmaceutics
Abstract
Extrinsic (photo) aging accelerates chronologically aging in the skin due to cumulative UV irradiation. Despite recent insights into the molecular mechanisms of fibroblast aging, age-related changes of the skin barrier function have been understudied. In contrast, the constantly increasing subpopulation of aged patients causes a clinical need for effective and safe (dermatological) treatment. Herein, we reconstructed human epidermis from UVB-irradiated keratinocytes (UVB-RHE). UVBirradiated keratinocytes show higher activity of senescence associated b-galactosidase, less cell proliferation, and reduced viability. Higher amounts of b-galactosidase are also detectable in UVB-RHE. Moreover, UVB-RHE release more interleukin-1a and -8 into the culture medium and present altered differentiation with a thinner stratum corneum compared to normal RHE. For the first time, the permeation of testosterone and caffeine through UVB-irradiated RHE indicate a clear influence of the UVB stress on the skin barrier function. Impaired barrier function was confirmed by the increased permeation of testosterone and caffeine as well as by the increased penetration of dendritic core-multishell nanocarriers into the constructs. Taken together, UVB-RHE emulate hallmarks of skin aging and might contribute to an improved nonclinical development of medicinal or cosmetic products.
Tissue type
Epidermal
Species
Human
CELLnTEC Previous products
CnT-PR-3D

< Back to publications