Title
Analysis of the tumor-initiating and metastatic capacity of PDX1-positive cells from the adult pancreas
Authors
Irene Ischenko, Oleksi Petrenko, and Michael J. Hayman
Institution
Stony Brook
Country
United States
Year
2014
Journal
PNAS
Abstract
Pancreatic cancer is one of the deadliest human malignancies. A striking feature of pancreatic cancer is that activating Kras mutations are found in ∼90% of cases. However, apart from a restricted population of cells expressing pancreatic and duodenal homeobox 1 (PDX1), most pancreatic cells are refractory to Krasdriven transformation. In the present study, we sought to determine which subsets of PDX1+ cells may be responsible for tumor growth. Using the Lox-Stop-Lox–KrasG12D genetic mouse model of pancreatic carcinogenesis, we isolated a population of KrasG12D-expressing PDX1+ cells with an inherent capacity to metastasize. This population of cells bears the surface phenotype of EpCAM+CD24+CD44+CD133–SCA1− and is closer in its properties to stem-like cells than to more mature cell types. We further demonstrate that the tumorigenic capacity of PDX1+ cells is limited, becoming progressively lost as the cells acquire a mature phenotype. These data are consistent with the hypothesis that the adult pancreas harbors a dormant progenitor cell population that is capable of initiating tumor growth under conditions of oncogenic stimulation. We present evidence that constitutive activation of the mitogen-activated protein kinase (MAPK/ERK) signaling and stabilization of the MYC protein are the two main driving forces behind the development of pancreatic cancer cells with stem-cell–like properties and high metastatic potential. Our results suggest that pancreatic cells bearing Kras mutation can be induced to differentiate into quasi-normal cells with suppressed tumorigenicity by selective inhibition of the MAPK/ERK/MYC signaling cascade.
Tissue type
Pancreatic Duct
Species
Mouse
CELLnTEC Previous products
CnT-17

< Back to publications